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PERIODIC MODES IN AN ISOTHERMAL TUBULAR REACTOR 

B. Lakatos, D. Blickle, 
D. Elenkov, and Ts. Sapundzhiev 

UDC 66.023/.025 

Nonstationary periodic conditions in an isothermal tubular reactor are considered. 
A study is made of the effects of the amplitude, frequency, and waveform of the 
input concentration signals on the average throughput. 

A reactor with nonlinear kinetics is often better operated in nonstationary cyclic mode 
than in a stationary one. This was first pointed out in [i, 2], and then in [3] variational 
methods were used to formulate the optimization conditions. Since then, there have been very 
extensive studies on periodic modes of various types: for example, in [4] a study was made 
of the quasistationary state, while in [5] positive feedback was considered, in [6, 7] the 
study concerned systems was distributed parameters, in [8] periodic relaxation oscillations 
were examined, and [9] dealt with adiabatic reactors. In [10], very effective estimates were 
obtained by means of the ~ criterion, while in [11] differential inequalities were used for 
slmilar purposes. The results and problems in this area have been surveyed in [12, 13]. 

The publlshed data relate primarily to completely mixed systems, or sometimes to models 
for ideal displacement, but very little is known about models characterizing intermediate 
mixing states. Here we may mention [7], in which an axial dispersion model was used to 
examine isothermal tubular reactors for the case of a second-order reaction, but only for a 
sinusoidal input signal and for parameters varying over a very narrow range. 

Here we present some more general results for isothermal reactors, which can be de- 
scribed by means of an axial dispersion model. We consider irreversible reactions of order 
n and give data for limiting cases of mixing. Also, the results obtained previously for 
second-order reactions are extended to the effects of the frequency of the periodic input 
signals on the throughput, and we discuss the determination of the optimum period for sinu- 
soidal inputs. The calculations were performed with an analog computer using perturbation 
methods. 

Formulation. Consider an isothermal tubular reactor in which there is an irreversible 
reaction of order n, which is described mathematically by an axial dispersion model: 

Oc(x, t) =Lnc(x, t), xE(O, 1), t>O;  (1) 
Ot 

(la) L~= I 0,(.) o(.) ~(.). 
Pe Ox 2 Ox 

with the boundary conditions 

c(x, t) 1 Oc(x,t) =u(t),  x=O, t>O;  (2a) 
Pe Ox 

Oc(x, t) - -0 ,  x =  1, t > O ,  (2b) 
Ox 

Engineering Chemistry Research Institute, Hungarian Academy of Sciences, Veszprem. 
Central Laboratory for the Theoretical Principles of Chemical Engineering, Bulgarian Academy 
of Sciences. Translated from Inzhenerno-Fizicheskil Zhurnal, Vol. 46, No. 4, pp. 613-622, 
April, 1984. Original artlcle submitted July 8, 1981. 

444 0022-0841/84/4604-0444508.50 �9 1984 Plenum Publishing Corporation 



and the initial condition 

c(x, o) = o. O) 

We assume that the function is periodic with period T > 0, i.e., u(t) = u(t + T), t~0, 
while c s is the stationary solution to (1)-(3) when u s is constant: 

L n aCs(X) O, X6(0 ,  1); (4) 

1 dcs (x) x = O; (Sa) 
u~ = cs (x) Pe dx ' 

dc~ (x) = 0, x = 1. ( 5 b )  
dx 

Then the treatment for the periodic state can be formulated as follows: let the time average 
of the periodic function u be equal to the constant us. We compare the time average for the 
function c in the steady state with the value for Cs taken at the same point. If it is less~ 
the periodic state gives higher conversion, and therefore under otherwise equal conditions 
may be better than the corresponding stationery state. We then have to  consider the charac- 
ter of the periodic functions giving this result and which of these functions is the best. We 
first consider the quasistationary state. 

Quasis~ationary State with Reaction of Order n. If there ere slow oscillations at the 
input (period greatly exceeding the mean resldence time or time constant of the reactor), in 
which case the reaction dynamics have only a small impact, ~hen we have a quasistationary 
state. Then the reactor is considered to operate by passing to working points with differ- 
ent stationary states no matter what the dynamic effects~ i.e., the response is completely 
determined by the static characteristic. This means that if A s is the mapping u s § Cs de- 
fined by (4) and (5), the response of the reactor at time t is given by the following equa- 
tion for some function slowly varying in time: 

cq (t) = A, (u (t)). ( 6 )  

As the mapping cs § c~, n > I, is convex, the mapping A s is concave and monotonically in- 
creasing [ii]. According to the inequality of [14] applicable to concave functions, we get 
that 

where the integral 

A, (u (t))~ A, ~ ,  (7) 

r (a) 
u (t) = (t) dt 

T o 

denotes the value averaged over time. 

Then if [Us[ = u(t) we get from (7) that 

A, (u (t)) ~< A, (u,), (9) 

i.e., slowly propagating oscillations usually raise the throughput of a tubular reactor as 
described by the model of (I)-(3) and never reduce it. 

Limiting Cases of Mixing with a Reaction of Order n. We now consider the problem of 
(1)-(3) in the limiting cases Pe § 0 and Pe -> ~, which reflect the corresponding cases of 
limiting mixing in the reactor. Then in addition to the above qualitative arguments we ap- 
ply the method of approximate solution given in [2] to derive quantitative estimates. 

Case Pe = 0. The reactor is completely mixed. If we write the input function in the 
form u(t) = u s + u' (t), where ~ = 0, then (1)'(3) become a problem with the initial 
value 

dzq) 
- d r  + z ( t ) + a z n ( t ) = 6 u ( t ) + l ,  z ( 0 ) = 0 ,  (10) 

where 

z = ctu~, &~ = # l u s ,  a = R x u ~ - ,  (Ii) 

We represent z as the sum of the stationary solution Zs and the deviation y from it 
(z = z s + y) and substitute this into (lO). Then we get the differential equation 
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t |  (12) dU (0 + 0 + ~) y (0 = 8u (t)- ~ ~ a~f (0, 
where dt k=2 

nT _n--k 
-ZS 

ah = kl (n-k)l ' ~ = u~z~-1" 

We introduce the artificial parameter ~ with the nonlinear term on the left. The solu- 
tion to (12) is sought as 

Y = Yo + ~Yl § ~2Y2 + "'" (13)  

We substitute (13) into (12) with parameter ~ and equate the coefficients to identical powers 
of ~ on the left and right in (12) up to terms of the second degree to get a system of equa- 
tions: 

d!/o(t) ~-(1 § [~)Yo(/) = 5u(/); (14) 
dt 

dyl (t) ~- (~ + [~)y~ (t) = - ~ ] ~  a~o (0; (15) 
dt ~=2 

d y~ ( t____~) + (1 + [~)y, (t) = - - ~  ~ k a ~ o - '  (t)y~(t). (16) 

dt ~=~. 

I f  6u( t )  = A s in  ~ t ,  then 

where  

Yo (t) = B sin (cot - -  q~), (17) 

B= A . o) , ~ = Arc tgT-~-- ~ ; Uo(t) = O. 
V(1 +~)~+,o" 

The express ions  for  approximat ions  above the ze ro th  o rde r  a re  very  compl ica ted ,  but  we 
a r e  i n t e r e s t e d  o n l y  i n  t h e  t i m e  m e a n s .  For  e x a m p l e ,  

~l(t) = 1 - -~  ~ ~j z:-~l B2122~ ," (18)  

-- [,/~1 ( ) ( i  ) B'I-' (19) ~,,(t)  = - ~'Yl (t) ] ~  ( 2 / -  l) n 2 - 2 ~ _ , j + ~  2 ' j - '  
1+[5 I=~ 2]--1 1 

The mean solution in the case ~ -1 takes the form 

z(t) --, ~ + ~(t)  + u,(t) (20) 

and according to (18) and (19) is less than z s. Note that for n ffi 2 (18) coincides with the 
solution obtained in [2]. 

Case Pe = =. The reactor is an ideal-displacement system, and the model is described 
in the above symbols by the following boundary-value problem: 

Oz (x, t) gz" (t) = Oz (x, t) . 
ax  at  ' 

z (0, t) = 1 + 8u (t); 

z(x, O) = O. 

(21) 

(22) 

(23) 

I f  t h e  s o l u t i o n  i s  s o u g h t  i n  t h e  same way as  f o r  an i d e a l - m i x i n g  r e a c t o r ,  t h e  f i r s t - o r d e r  
approximat ion for  the mean i s  

z(x,  t) ,-, z,(x) ~ ~ 2 / ,  ~s 2/ 

w h e r e  c ( x )  = A e - ~ x .  

(24) 

Here  i t  i s  c l e a r  t h a t  t h e  r e d u c t i o n  m e a s u r e  i s  i n d e p e n d e n t  o f  f r e q u e n c y  and i s  a f u n c -  
t i o n  o n l y  o f  t h e  a m p l i t u d e .  
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Axial DisperslonModel with Second-Order Reaction. 
for the case n = 2. 
tlon takes the form 

We consider the model of (i)-(3) 
The boundary-value problem for the deviation from the stationary solu- 

Oy(x, t) 
o-- -7--=L'~v(x ,  O--=@(x, t), xE(O, 1), t > o ;  

L~'= I a~(.) a(.) _p~(.); 
Pe Ox 2 ax 

- - ,  x=O; 
i Og(x, t) 8u (t) = v (x, t) 

Pe Ox 

Oy (x, t) = O, x =  1, 
Ox 

with the initial condition y(x, 0) = 0, where a= = Rtus and Bs " 2~=zs. 

In the way described above, we use parameter ~ from the app~0gimations of zeroth and 
flrs~ orders to get the following boundary-value problems: 

Oyo (x, t) , 
=Lgyo(x,  t), xE(O, 1), t > O ;  

Ot 

8u(t) Vo(x,t)-- I ouo(x,t) = , x ~ O ;  
Pe @x 

OYo(X,t) = 0 ,  x =  1; 
Ox 

0yl (x, t) 
- - = L ~ v ! h ( X ,  t ) - - ~ o ( x ,  t), xE(O, 1), t > O ;  

Ot 

o = y ,  (x, t) I__ ~t____~,,ovl (x, x=O; 
Pe Ox 

(2s) 

(25a) 

(26a) 

(26b) 

(27) 

(28a)  

(28b) 

(29) 

(30a) 

Ogl (x, 
t,=~ O, x = I. (30b) 

Ox 

In  t he  c a s e  6 u ( t )  = A s i n  mr, t h e  s o l u t i o n  o f  ( 2 7 ) - ( 2 8 )  ~S obtained in the form 

where  

Yo (x, t) = ~ Ak sin (ot - -  r (31) 
k = i  

- -  Vt~ cos y~,v + , sin V~x (32a)  
A~, = 

V ; ....... ~ ( 7 ~  Pe , ( P  " 
\ P e  - k - - 4 - + l ~  +o)Z Y~,-r " ~  + P e  

O} 

fg q~ = y~ Pe ' (32b) 
Pe + - ' T  -+132 

.... ) are the positive roots of the transcendental equation 

Pe Vh tg y~ ---- (;o) 
y~ -- -- (33) 

The mean value of the solution to (29)-(30) is 

and the quantities Yk (k = i, 2, 

V1(x, t) = -- ~,~ ~ B,~ (x) ~ ~' ~ r r Pe 
h = !  L / = l  j ~ l  0 

(34) 
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where 

ex.!  4 
\ P e  + ' 4 "  +1~2 Y~+  - -  + p e  

Expression (34) is too complicated for one to draw any direct conclusion on the changes, 
and in what follows it will be used for detailed calculations. 

Analog Computer Simulation. A detailed study was made of (1)-(3) for the case n = 2 

with an analog computer. Periodic input functions with various periods were used. 

We examined the following input functions: 

u (t) = us + u A sin tot; (36) 

u (t) = { 2u,, nT  ~ t ..~ n T  + 0.5T, (37) 
O, n T + O . S T ~ t . < ( n +  I)T, n = 0 ,  1, 2, . . . ;  

u ( t ) =  2us t, n T ~ t  < ( n + l ) T ,  n = 0 ,  1, 2 . . . .  (38) 
T 

Equation (i) was approximated on a discrete network in the variable x as follows: 

dci 1 ci+l - -  2ci + ci_l ci+x - -  c~_~ (39) 
dt Pe h ~ 2h RTc~, i = l ,  2 . . . . .  N, 

where h = l /N;  c i ( t )  = c ( i h ,  t ) ,  i = O, 1, . . . ,  N. 

The interval [0, i] was split up into five equal parts (n = 5), which gives us the fol- 
lowing system of equations on the basis of the boundary conditions: 

dcx(t) = k~c, (t) + k'c~ ( t ) -  R'cc~ (t) + k"u (/); (40a) 
dt 

dci ('t) 

dt 

dc5 (t) k8 Ice(t) c5 (t)l ~ 2 
d t  = - -  - -  R c s (t); 

c~ (0) . . . . . .  c5 (0) = O, 

i = 2 , 3 ,  4; 
(40b) 

(4Oc)  

(40d) 

in which the constants are given by 

25 25 50 
k~ . . . . . .  2.5; k2 = + 2 . 5 ;  k3 = ; 

Pe ~ e  Pe (41) 

k ' =  k~ - -k3;  k"=  5k, Pe . 

l + 5 P e  l + 5 P e  

The MEDA analog computer at the Central Laboratory of the Theoretical Principles of 
Chemical Engineering, Bulgarian Academy of Sciences, was used to solve this problem. Figure 
1 shows the solution to (40) for the input functions (36)-(38), where the function cs are 
the output functions (i.e., Cs ffi tout) for the initial reactant. 

Discussion. We examined the dependence of the average conversion on the amplitude and 
frequency for a slnusoldal input function. The mean conversion increased with the amplitude 
as shown in Fig. 2. In essence, the same concluslon can be drawn from (34) and in the limit- 
ing cases from (24) and (18)-(20). 

The effects of frequency are not so pronounced. At frequencies large by comparison with 
the reclprocal of the mean residence time, periodic concentration oscillations at the input 
have virtually no effect, since the inertia in the system effectively filters them out. The 
effect appears as the period of the oscillations increases at flrst, then again approximates 
Co zero for very slow oscillations; there:is therefore an optimum frequency. This is shown 
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Fig. i. Solution to (1)-(3) obtained 
with an analog computer for various 
input functions in the case n = 2; 
Pe = i0; R~ = i0; i) sinusoidal, Us = 
i, u A = 0.5, T = 6.285; 2) Bquare wave, 
Us = I, T = 6.285; 3) sawtoo~h, u s = 
i, T = 6.285; a) input function u(t); 
b) output Cou t. 

~out 

Fig. 2. 

5 6 

02 @ u~ 

Effects of amplitude on pro- 
ductivity for a slnusoidal input func- 
tion with various frequencies (Pc = i, 
Rz = i0, u s = i): i) ~ = 0.5; 2) 11 3) 
5; 4) i0; 5) 50; 6) i00. 

in Fig. 3, where the individual points up to ~ = 0.5 were obtained by solution with the ana- 
log computer. At lower frequencies (with given values for the parameters), the processes 
were too slow by comparison with the period of the analog computer, so the calculations 
could be performed only with considerable error. 

To overcome these difficultiesj the calculations were performed with a digital computer 
by means of (34). We used the 12 first positive roots of (33), which have been given in [15] 
in tabular form. Curve 2 of Fig. 3 shows the results~ which indicates that the approximate 
solution of (34) gives a good description of the tendencies, but there are considerable dif- 
ferences between the absolute values. 

To find more accurate values for frequencies ~ ~ 0.5, =he boundary-value problem of 
(1)-(3) was solved numerically in the case n = 2 with the digital computer by quasilineariza- 
tion [16]. The nonlinear term was linearized by means of a Newton--Raphson formula, while the 
differentiation operator was approximated as a Frank--Nicholson difference one. The resulting 
algebraic system with a three-diagonal matrix was solved by Thomasts method [16]. The pro- 
gram was written in Algol-1204 and an Odra-1204 computer was employed. Curve 3 of Fig, 3 
shows the results, which supplement the information obtained with the analog machine. 
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Pig. 3. Effects of frequency on reactor productivity for a 
sinusoidal input (Pe ffi I, RT = i0, u s = i, u A = 0.5): i) 
solution obtained with analog computer; 2) approximate so- 
lutlon; 3) numerical solution from digital computer; ~ in 
1 / sec .  

Fig. 4. Effects of the input concentration waveform on re- 
actor productivity (Pe = i, R~ ffi i0): i) sinusoidal, Us = I, 
u A = 0.5; 2) square wave, Us = i; 3) sawtoothD u s ffi i. 

The analog computer was used to examine the effects of input-signal shape on the solu- 
tion, which is equivalent to frequency analysis. Figure 4 shows that the best results were 
obtained forwaves of the rectangular form of (37) at the frequencies examined, followed by 
the sinusoidal function of (36) and thesawtooth of (38). It should be noted that an input 
signal of square form is the most suitable for practical realization, although it is impos- 
sible to obtain this waveform absolutely exactly because of the inertia. 

NOTATION 

Gk, constant; As, stationary solution operator; Ak, amplitude of (32a) (k - i, 2, ...); 
A, B, C, amplitudes; c, concentration function of initial reactant; cq, quaslstationary con- 
centration function; ci, discrete concentration function; h, step along x; k~, ka, ks, k I, 

n k", constants in (40)-(41); La, Ly, differentlal operators; Fe, Peclet number; R, reaction 
constant; t, dimensionless time; T, period time; u, input concentration function; u I, peri- 
odic function with zero mean; UA, amplitude; x, dimenslonless length; y, deviation from the 
stationary solution; Yl, parameter series functions (i ffi i, 2, ...); 7k, positive roots of 
(33);~ k, phase angle of (32b); ~, perturbation parameter; ~, frequency; T, mean residence 
time; subscript s, stationary value. 
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THERMAL-PARAMETER DETERMINATION FOR THIN-WALLED 

DRUM-TYPE CRYSTALLIZERS 

V. V. Bodrov UDC 536.242:66.065.52 

A two-dimensional heat-transfer problem has been solved with boundary conditions 
of the first and third kinds for a rotating hollow thin-walled cylinder. An ex- 
ample of the results in use is given. 

Crystallizers of drum type are used in metallurgy [i], in the chemical industry [2], and 
in the production of ice [3], so calculations on their thermal conditions are of interest. 

Studies have been made [4-6] of the thermal fields in a rotating hollow cylinder with 
boundary conditions of the first kind. 

In [4], a thin-walled cylinder was envisaged, with a temperature difference only around 
the perimeter. In [5], on the other hand, the temperature change along the cylinder director 
was not incorporated. In [6], the problems were solved with temperature variation along the 
radial and angular coordinates. The solution was presented in terms of Kelvin functions, 
which makes for certain difficulties in using it. 

If the radius of the cylinder is greater than the wall thickness by a factor of 50 or 
more, the problem can be treated in Cartesian coordinates, which simplifies it considerably. 
This formulation may be applied to a two-dimensional plate of finite length with a conjuga- 
tion condition at the ends. 

In [7], the two-dimenslonal problem was solved for a rectangular plate with a tempera- 
ture distribution on one of the surfaces varying in a specified fashion with time, while 
there was zero temperature at the other surfaces and a nonzero initial temperature distribu- 
tion. 

A real crystallizer usually works in a quasistationary state, where the initial tempera- 
ture distribution is unimportant and the ends of the plate have identical nonzero but unknown 
temperature distributions over the thickness, while Newtonts law applies to the heat transfer 
at the cooled surface. The problem is formulated mathematically as 

1 aO 020 + 020 O<x-~<6, (1) 

a a~ =ax--; Oy~ ' O < V < . l = 2 ~ R ,  

O(x, y, 0 ) = 0 ,  0~,  O, T )=O~ ,  t, ,), (2) 
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